Obwohl Silizium das zentrale Material für klassische Computer ist, spielt es bei den gegenwärtig favorisierten Quantencomputer-Konzepten keine Schlüsselrolle. Es wäre jedoch sehr sinnvoll, die mit der Halbleiter-Technologie bereits entwickelte, mehrere Milliarden Euro teure Silizium-Infrastruktur auch zur Verarbeitung von Qubits – den quantenmechanischen Informationseinheiten – zu nutzen. Forschende haben gezeigt, dass sogenannte Donor-Spin-Qubits eigentlich besonders gut dafür geeignet sind. Diese Qubits nutzen eine Eigenschaft von Fremdatomen, ihren Spin, um Informationen zu verarbeiten. Sie zeichnen sich im Vergleich zu anderen Quantensystemen durch lange Zeiträume aus, über die sie stabil bleiben, um quantenmechanische Rechenoperationen durchzuführen. Derzeit sind sie jedoch nicht das Arbeitspferd von kommerziellen Quantencomputern, da es keine geeigneten Kopplungs- und Auslesemechanismen gibt, die für eine Skalierung auf ein praktisch nutzbares Niveau verwendet werden könnten.
EQUSPACE zielt nun darauf ab, in Europa eine langfristige Zukunft für Donor-Spin-Qubits auf Silizium-Basis zu schaffen. Die Plattform will die auf winzigen atomaren Spins basierenden Qubits über Schallwellen in schwingenden Strukturen miteinander verbinden. Außerdem kommen Laser und Einzelelektronentransistoren zum Einsatz, um am Ende der quantenmechanischen Berechnung das Ergebnis elektrisch auszulesen. Das Projekt soll eine skalierbare Lösung für alle wichtigen Aspekte einer Quantenplattform bieten: die Steuerung und das Auslesen des Ergebnisses, die Spin-Spin-Kopplung zwischen Qubits sowie die Weiterleitung von Quanteninformationen zwischen Recheneinheiten auf dem Chip. Das Endergebnis könnte eine vollständige Quanteninformations-Plattform sein, die Qubits, Verbindungselemente und skalierbare Steuer- und Ausleseelektronik umfasst.
HZDR-Expertise in der Silizium-Quantentechnologie
Ein Team des Instituts für Ionenstrahlphysik und Materialforschung am HZDR wird seine Expertise bei der atomaren Modifikation von Silizium für Quantenanwendungen einbringen und die materialwissenschaftlichen Methoden weiterentwickeln, die als Grundlage für das Projekt benötigt werden. Das Team wird dazu einen fokussierten Ionenstrahl nutzen, um ultra-reines Silizium örtlich mit dem Isotop Silizium-28 anzureichern. Silizium-28 hat den Vorteil, dass seine Atomkerne im Vergleich zu vielen anderen Materialien keinen Spin haben, der mit Magnetfeldern oder dem Spin von anderen Teilchen wechselwirken und dadurch die Berechnungen stören könnte. „Durch die gezielte Anreicherung mit speziellen Isotopen bleibt der Quantenzustand länger stabil. Das erlaubt komplexere Quantenoperationen, und die Plattform kann so perspektivisch klassische Computer sowie andere Quantencomputersysteme übertreffen“, sagt HZDR- Projektleiter Dr. Nico Klingner.
Neben der Isotopenreinigung entwickelt das Team die Einzelionenimplantation von Donor-Atomen. Damit sollen einzelne Bismut-Atome implantiert werden, deren Spin ein Zwei-Zustands-System bildet, der wahlweise nach „oben“ oder nach „unten“ zeigen kann. Die Besonderheit der Qubits besteht darin, dass bei sehr tiefen Temperaturen beide Zustände in Überlagerungen gleichzeitig existieren können: der Spin kann sich gleichzeitig in einer Kombination aus den Zuständen „oben“ und „unten“ befinden. So können Quantencomputer viele Berechnungen parallel durchführen, was ihre Rechenleistung drastisch erhöhen kann.
Einer der Hauptvorteile von Donor-Spin-Qubits ist ihre relative Stabilität im Vergleich zu anderen Arten von Qubits, zum Beispiel solchen, die auf supraleitenden Schaltkreisen basieren. Der Spin in einem Donor-Atom ist weniger anfällig für Störungen aus der Umgebung, so dass der Quantenzustand über längere Zeiträume aufrechterhalten werden kann. Diese Stabilität ist für die Skalierung von Quantencomputern auf eine größere Anzahl von Qubits unerlässlich, ohne dass die Kohärenz oder die Präzision der Berechnungen verloren geht. „Diese Beiträge des HZDR, insbesondere in den Bereichen Isotopenreinigung, Implantation und Spannungsoptimierung in Halbleitern, sind von grundlegender Bedeutung für den Erfolg des EQUSPACE-Projekts“, schätzt Professor Juha Muhonen, der Koordinator des Projekts, ein.
Stärkung der Position Europas im globalen Quantenwettbewerb
Dem EQUSPACE-Konsortium gehören Forscher*innen der Universität Jyväskylä, des VTT Technical Research Centre of Finland, des HZDR, des NWO-Instituts AMOLF in den Niederlanden und des finnischen Start-ups SemiQon Oy an. Die Zusammenarbeit spiegelt das wachsende Engagement Europas im weltweiten Quantenwettlauf wider. Angesichts des sich verschärfenden globalen Wettbewerbs steht die europäische Quantenindustrie durch die Konkurrenz führender Länder wie die USA, China, Kanada und Australien vor großen Herausforderungen.
„Der Ansatz von EQUSPACE ist von entscheidender Bedeutung, um sicherzustellen, dass Europa auf dem schnell voranschreitenden Gebiet der Quantentechnologien wettbewerbsfähig bleibt. Mit dieser Förderung baut EQUSPACE ein starkes Forschungsnetzwerk in Europa auf, das auf Donor-Spin-Qubits basiert – eine Entwicklung, die die europäische Quantenindustrie langfristig stärken wird“, erklärt Muhonen. Die Finanzierung ist Teil des Förderprogramms Horizont Europa. Das Projekt, das die Universität Jyväskylä leitet, beginnt am 1. Februar 2025.
Kontakt
Prof. Juha Muhonen
Universität Jyväskylä
Tel.: +358401905352
E-Mail: juha.t.muhonen@jyu.fi
Dr. Nico Klingner
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260 2524
E-Mail: n.klingner@hzdr.de
– – – – –
Weiterführende Links
👉 www.hzdr.de
Foto: B. Schröder / HZDR