Fraunhofer IPMS: Intelligente Sensorlösungen für die Industrie 4.0
Die Industrie der Zukunft wird digitaler, effizienter und automatisierter. Autonome Fahrsysteme und Roboter werden dabei die Arbeit des Menschen erleichtern. Um diese Vision Realität werden zu lassen, entwickelt das Fraunhofer-Institut für Photonische Mikrosysteme IPMS auf mikroelektromechanischen Systemen basierende Sensoren, optische Komponenten sowie Aktorik, welche die Umgebung erfassen und die Interaktion sicher gestalten. Die Sensorik wird dabei zum Sinnesorgan der Digitalisierung: Sie bildet die Schnittstelle zwischen Maschine und Mensch. Einige der neuesten Entwicklungen – wie das Vektorscannermodul mit Elektronik – stellt das Institut nun auf der LASER World of PHOTONICS in München vor.
Die Industrie der Zukunft wird digitaler, effizienter und automatisierter. Autonome Fahrsysteme und Roboter werden dabei die Arbeit des Menschen erleichtern. Um diese Vision Realität werden zu lassen, entwickelt das Fraunhofer-Institut für Photonische Mikrosysteme IPMS auf mikroelektromechanischen Systemen basierende Sensoren, optische Komponenten sowie Aktorik, welche die Umgebung erfassen und die Interaktion sicher gestalten. Die Sensorik wird dabei zum Sinnesorgan der Digitalisierung: Sie bildet die Schnittstelle zwischen Maschine und Mensch. Einige der neuesten Entwicklungen – wie das Vektorscannermodul mit Elektronik – stellt das Institut nun auf der LASER World of PHOTONICS in München vor.
Mikroelektronik und Mikrosystemtechnik sind Schlüsseltechnologien und Enabler für eine Vielzahl von Anwendungen. So bilden miniaturisierte, intelligente und vernetzte Sensoren und Aktoren die Basis für IoT, Industrie 4.0 und zahlreiche Zukunftsanwendungen mit künstlicher Intelligenz. Einige der neuesten Forschungsarbeiten zum Thema Sensorik stellt das Fraunhofer IPMS nun auf der 25. Weltleitmesse für Komponenten, Systeme und Anwendungen der Photonik – der LASER World of PHOTONICS in München vom 26. bis 29. April vor.
Kundenspezifische hochminiaturisierte MEMS-Scanner Das Fraunhofer IPMS verfügt über langjährige Erfahrung in der Entwicklung und Herstellung von kundenspezifischen, hochminiaturisierten MEMS-Scannern. Die Bauelemente zeichnen sich durch große Scanwinkel und hohe Scanfrequenzen aus und zeigen eine ausgezeichnete Langzeitstabilität. Ein qualifizierter CMOS-kompatibler Bulk-Micromachining-Prozess wird zur Herstellung von 1D- und 2D-Mikroscannern in kleinen und mittleren Stückzahlen eingesetzt. Der augensichere Demonstrator, welcher auf der LASER World of PHOTONICS vorgestellt wird, veranschaulicht die möglichen Betriebsmodi eines 2D-MEMS-Scanners mit quasistatischer Außenachse und resonanter Innenachse. Anwendungen dieser Technologie finden sich in der scannenden Bildgebung, Laserscanning-Mikroskopie, Endoskopie, LiDAR-Sensorik für das autonome Fahren oder bei Head-up-Displays, Head-mounted Displays sowie AMR-Displays.
Vorstellung der ersten Vektorscannermodule mit Elektronik Neu im Portfolio der MEMS-Microscanner des Fraunhofer IPMS sind hybride 2D-Vektroscannermodule mit elektromagnetischem Antrieb. Das Fraunhofer IPMS baut hier auf langjährige Erfahrungen in der Herstellung von kardanisch gelagerten, monolithischen 2D-MEMS-Scannerspiegeln auf und verbindet diese mit dem vorhandenen Know-how der Mikromontagetechnologien von MEMS.
"Dieser neue Ansatz erweitert den Parameterraum der bisherigen monolithischen Scanner deut-lich. Dabei bleiben die etablierten Vorzüge der Fraunhofer IPMS-Scannerspiegeltechnologie – hohe optische Planarität und Entkopplung der Scanachsen durch kardanische Aufhängung sowie die Ermüdungsfreiheit der Federelemente – erhalten. Die neuen Bauelemente erlauben die 2-dimensionale quasi-statische Auslenkung bei größeren Spiegelaperturen sowie einer hohen vektoriellen Positioniergeschwindigkeit", erklärt Dr. Jan Grahmann vom Fraunhofer IPMS.
Das Modul stellt auch die Spiegelposition in Form analoger Signale zur Verfügung, um ein geregeltes System realisieren zu können. Die bekannten zusätzlichen Features wie das Aufbringen einer kundenspezifischen, hochreflektierenden dielektrischen Verspiegelung oder die Realisierung der Spiegelplatte als Beugungsgitter sind auch für diese Bauelemente durchführbar. Um die Performance des Scanmoduls auszureizen, ist die geregelte Ansteuerung des Bauteils empfehlenswert. Die benötigten und feinmaschig an die mechanischen Eigenschaften des Moduls angepassten Regelalgorithmen wurden am Fraunhofer IPMS entwickelt und können auf die digitale Ansteuerung der kundenseitigen Systemelektronik (FPGA oder Mikrokontroller) übertragen werden. Ergänzend steht eine kompakte Ansteuerelektronik mit einer präzisen analogen Treiberstufe und Eingangsstufen für die Positionssignale zur Verfügung. Sie kann sowohl analog als auch über eine digitale Schnittstelle angesprochen werden.
Quantenkaskadenlaser mit extremer Auflösungserhöhung für die Spektrometrie Weitere Forschungsarbeiten des Fraunhofer IPMS befassen sich mit der sensorischen Erfassung der Umgebung mittels Quantenkaskadenlaser-Spektroskopie. Die gemeinsam mit dem Fraunhofer-Institut für Angewandte Festkörperphysik IAF entwickelten miniaturisierten Quantenkaskadenlaser decken einen großen Wellenlängenbereich und einen breiten spektralen Abstimmbereich bei hoher Scanrate ab. Das am Fraunhofer IPMS entwickelte mikromechanisch gefertigte Beugungsgitter dient als externer Resonator des Quantenkaskadenlasers mit variabler Frequenz. Es ermöglicht die Abstimmung von Laserwellenlängen mit wählbarer Geschwindigkeit oder indem Wellenlängen angefahren und für gewählte Zeiträume gehalten werden. Dabei können spektrale Bereiche auch modensprungfrei und daher sehr hoch aufgelöst abgestimmt werden.
Besucher der LASER World of PHOTONICS sind eingeladen mit den Forschenden des Fraunhofer IPMS am Ausstellungsstand #B4.239 ins Gespräch zu kommen.
Über das Fraunhofer IPMS Das Fraunhofer-Institut für Photonische Mikrosysteme IPMS steht für angewandte Forschung und Entwicklung in den Bereichen industrielle Fertigung, Medizintechnik und verbesserte Lebensqualität. Unsere Forschungsschwerpunkte sind miniaturisierte Sensoren und Aktoren, integrierte Schaltungen, drahtlose und drahtgebundene Datenkommunikation sowie kundenspezifische MEMS-Systeme.